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Some facts from quantum mechanics

• Molecule is a confined system, => molecular energy is quantized;
• Solving Schrödinger equation outputs discreet energy levels and molecular 

wave functions;

A free molecule, as a system of bound nuclei has 3 types of confined motions:
translational as a whole, rotational and vibrational for nuclei.
In addition, electrons that bind the nuclei also confined: electronic motion.

• In the adiabatic approximation different motions can be considered separately.

Vel >> Vvib >> Vrot



• A system of N particles owns 3N degrees of freedom, =>

• A nonlinear molecule has 3 translations and 3 rotations around 3 space axis;

• There are however only 2 rotations for a linear molecule (no rotation around 

axis of molecule), they are equal (degenerate);

• This leaves 3N-6 vibrations for non-linear and 3N-5 vibrations for linear

molecules.

2
Molecular degrees of freedom

3 translations 3 rotations in nonlinear molecule 
2 rotations in 
linear molecule

3N-6 vibrations 3N-5 vibrations
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Rotational motion in a rigid rotor

center of mass

ω - angular velocity
m1

m2

r

 

Energy levels:
 
Erot =

2J(J +1)
2µ r2

=
2J(J +1)
2I

;

I = m1m2

m1 +m2

r2 = µ r2 , µ =
m1m2

m1 +m2

, J=0, 1, 2,…
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Rotational energy levels:

Erot = BJ(J +1);

 
B = 

2

2 I
, J=0, 1, 2,…
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H2 B=60.8 cm-1

CO B=1.93 cm-1

Spacing increases by 2B!
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Vibrational motion: harmonic oscillator

x = 0

U(x)

F= -kx;                U= -1/2kx2;

 Evib = ω (v +
1
2 ), v = 0,1,2…

Energy levels:

ω = k
µ v=0

v=1

v=2

v=3

v=4

H2 4395.2 cm-1;          CO     2170.21 cm-1;

N2 1460.37 cm-1;         O2 1580.36 cm-1.



Vibrational motion: anharmonic oscillator
Morse potential

D0

R ->0    U --> 0;
R ->∞ U -> D0

Evib(n) = hc·[(n+1/2)·we-(n+1/2)2·we·ce]



Electronic energy levels
• Electronic energy depends on position of nuclei =>
• EE is a function of 3N-6 or 3N-5 vibrational 

coordinates (lengths of bonds, angles between bonds).
• Electronic energy is a multi-dimensional surface. 

Electronic states are difficult to calculate; they have 
complex notations due to many quantum numbers 
assigned to each state. 

R1 R2

0R1

0R2

2D PES for triatomic molecule

Diatomic
r

Cuts of PES for a triatomic molecule
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photon in state 1

state 2

state 1

state 2

Before After

E1

E2

E1

E2

ν
0  =  

E2 - E1
h  

Spectroscopic transitions

Rot1

2 Rot-Vib

3 Rot-Vib-Ele

 

Rotational:
10-3-10-1 m,

Rotational-vibrational (rovibrational):
3-30 micron,

Rovibrational-electronic (rovibronic):
500-100 nm.

Absorption (emission) changes 
translational energy only very tiny



9
Probability of spectroscopic transitions

Ψ =ψ el (r,Re ) ⋅ψ vib (R)⋅,ψ rot (ϕ ),

In Born Oppenheimer approximation the state of a molecule:

• The probability for optical transition 2 ß 1 is determined by the square of 
transition DM integral M21:
!
M 21 Ψ ' µ

"!
Ψ '' = Ψ ' (!r )∫ µ̂(!r )Ψ '' (!r )d!r ,

M 21 = ψ 'el∫∫∫ (r,Re )ψ 'vib (R)ψ 'rot (ϕ ) ⋅(µ̂el + µ̂vib + µ̂rot )ψ ''el (r,Re )ψ ''vib (R)ψ ''rot d
!r ,

d!r ≡ dr ⋅dR ⋅dϕ.

• Absorption, spontaneous and stimulated emissions occur due to a change of 
transition electric dipole moment (DM) of a molecule. 

µ(!r ) = qk ⋅
!rk

k
∑ , Sum over all nuclei and electrons; 

!r ∈(r,R,ϕ ).

Because r, R and j are independent this expression can be simplified. 



M 21 = ψ 'el∫∫∫ (r,Re )ψ 'vib (R)ψ 'rot ⋅(µel + µvib + µrot )ψ ''el (r,Re )ψ ''vib (R)ψ ''rot d
!r ,

M '21 = (ψ 'el∫ µelψ ''el )dr ⋅ (ψ 'vibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ;

M ''21 = (ψ 'el∫ ψ ''el )dr ⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ;

M '''21 = (ψ 'el∫ ψ ''el )dr ⋅ (ψ 'vibψ ''vib )dR∫ ⋅ (ψ 'rot µrotψ ''rot )∫ dϕ.

The three parts of the triple integral can be rearranged:

10
Probability of spectroscopic transitions

For a rovibronic transition: ψ 'el ⊥ψ ''el;  while ψ 'vib ,ψ ''vib  and ψ 'rot ,ψ ''rot

=> M’’=M’’’=0: M 21
rve = (ψ 'el∫ µelψ ''el )dr (ψ 'vibψ ''vib )dR∫ (ψ 'rotψ ''rot )∫ dϕ;

are not.

For a rovibrational transition: ψ 'el =ψ ''el;  ψ 'vib ⊥ψ ''vib .

=> M’=M’’’=0: M 21
rv = 1⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ.

For a purely rotational transition: ψ 'el =ψ ''el;  ψ 'vib =ψ ''vib;  ψ 'rot ⊥ψ ''rot .

=> M’=M’’=0: M 21
r = (ψ 'rot µrotψ ''rot )∫ dϕ;
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Probability of rovibronic transitions

M 21
rve = (ψ 'el∫ µelψ ''el )dr (ψ 'vibψ ''vib )dR∫ (ψ 'rotψ ''rot )∫ dϕ;

The 1st factor is called electronic TDM;
the square of the  2nd factor is Franck-Condon.

The probability for a molecule to change its quantum 
state due to absorption (emission) of a photon is 
proportional to M212 .

Often, only valent electrons can change their orbitals upon excitation, =>
The number of electrons (and of their r) to consider is often a few in a given spectral 
range.

r = (r1,...rm;  s1,...sm );  
R = (R1,... Rn;   I1,...In );   
ϕ = (ϕ,θ )

electron spin

nuclear spin

The coordinates are complex:
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Probability of rovibronic transitions

M 21
rve = (ψ 'el∫ µelψ ''el )dr (ψ 'vibψ ''vib )dR∫ (ψ 'rotψ ''rot )∫ dϕ;

There are some strict physical rules:
• Nuclear spins do not flip upon optical excitation.

Example:  ortho- and para- water.
• Electronic spins do not flip: only singlet-singlet and triplet-triplet 

transitions are allowed.
• Total angular momentum of (molecular + spin of photon, S=±1, 

0) must be conserved.=> Jrot=±1 (always), =0 (for molecules of 
certain symmetries)

Whether TDM ≠ 0 is determined by mutual symmetry of Y’, Y’’, and µel .  This can 
be determined from the symmetry of a molecule with respect to 5 symmetry 
operations using point group symmetry classification. 

Electronic TDM is non-zero, if the sub-integral function is even for the components of 
its multi-dimensional variable that change upon excitation (unchanged are equal). =>  

even(r) ⋅odd(r) ⋅
−∞

+∞

∫ even(r)dr = even −∞
+∞= 0

The lowest state is always symmetrical => Y’ and µel(x, y, z) must have, at least, one 
component  of the same group.



Examples of symmetry point groups
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Franck-Condon factor

M 21
rve = (ψ 'el∫ µelψ ''el )dr (ψ 'vibψ ''vib )dR∫ (ψ 'rotψ ''rot )∫ dϕ;

F-C factor controls intensity of vibronic transitions.
Because  belong to different electronic 
states, FCF, in general, is non-zero. It is determined by 
the overlap of the wavefunctions and reflects alignment 
of electronic PES:

Ψ 'vib   and Ψ 'vib

M 21
rve = (ψ 'el∫ µelψ ''el )dr (ψ 'vibψ ''vib )dR∫ (ψ 'rotψ ''rot )∫ dϕ;

FCF = (ψ 'vibψ ''vib )dR∫
2

aligned shifted

Transitions are shown vertical because nuclei do not move during electronic transition
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Probability for rovibrational transitions
M 21

rv = 1⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ.

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: Dv=±1; (fundamental)

Anharmonicity adds much weaker transitions with Dv=±2, ±3… (1st , 2nd,…overtones)

Typically, intensity of vibrational overtones scales as:  I(Dv)/I(1ß0) ~10 Dv-1

Pure rotational transitions
M 21

r = (ψ 'rot µrotψ ''rot )∫ dϕ;

Because rotation of a molecule does not change separation of electrons and nuclei, 
pure rotational transitions (microwave) are only possible for molecules with a 
permanent dipole moment. Selection rules are DJ =±1 (fundamental)
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Probability for rovibrational transitions
M 21

rv = 1⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ.

Rotational selection rules remain the same;
Vibrational selection rules for harmonic oscillator: Dv=±1; (fundamental)
Anharmonicity adds much weaker transitions with Dv=±2, ±3… (1st , 2nd,…overtones)
Typically, intensity of vibrational overtones scales as:  I(Dv)/I(1ß0) ~10 Dv-1
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Probability for rovibrational transitions
M 21

rv = 1⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ.

Rotational selection rules remain the same;
Vibrational selection rules for harmonic oscillator: Dv=±1; (fundamental)
Anharmonicity adds much weaker transitions with Dv=±2, ±3… (1st , 2nd,…overtones)
Typically, intensity of vibrational overtones scales as:  I(Dv)/I(1ß0) ~10 Dv-1

water
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Probability for rovibrational transitions
M 21

rv = 1⋅ (ψ 'vib µvibψ ''vib )dR∫ ⋅ (ψ 'rotψ ''rot )∫ dϕ.

Rotational selection rules remain the same;
Vibrational selection rules for harmonic oscillator: Dv=±1; (fundamental)
Anharmonicity adds much weaker transitions with Dv=±2, ±3… (1st , 2nd,…overtones)
Typically, intensity of vibrational overtones scales as:  I(Dv)/I(1ß0) ~10 Dv-1

34003200300028002600

Wavenumber /cm-1

NH3
+

NH3
+

NH3
+

CH

F

O

V

L

CH
**

**
*

*

170016001500

150

NHb

COstr

COstr

*

*

*

*
****

Decapeptide (146 atoms)
Ø All vibrations are active
Ø No rotational resolution is possible
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Non-radiative transitions

Schematic diagram showing the energy transfer processes occurring in 
thermal molecular collisions.  V, R, and T refer to vibrational, rotational, and 
translational energy respectively.  The numbers are typical values of Pτ (atm 
s), the bulk “relaxation time” characterizing the particular mode of energy 
transfer (Adapted from W. H. Flygare, Accounts chem. Res 1, 121 (1968)).

V V

R R

T

10-8

10-6

10-10

10-4

10-8

 

Electronic ground state:

K ∝
Vab
2

Ea − Eb

;

Energy is still conserved!

Δ( Ed∑ ) = Δ( Ea∑ );

Resonant conditions

1. Intramolecular

2. Collisional
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Non-radiative transitions

S0

S1

S2

T1

T2

 vibrational
relaxation
> 1012  s-1

internal
conversion
106-1012 s-1

 vibrational
relaxation
> 1012  s-1

intersystem
crossing

10-1-105  s-1

intersystem
crossing

104-1012  s-1

vibrational
relaxation

Absorption

Fluorescence
106 –109 s-1

Absorption

Absorption

Phosphorescence
10-1 –104 s-1

Electronic ground state, S0,
is always singlet

The lowest triplet state
is labeled as T1
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State populations

Boltzmann distribution:

Ni = cgi e
−Ei /kbT

Ni
i
∑ = N = c gi e

−Ei /kbT

i
∑

Proportionality constant:

c = N
gi e

−Ei /kbT

i
∑

Ni =
Ngi e

−Ei /kbT

gi e
−Ei /kbT

i
∑

1
2

3

0

E

Ni

Temperature:   T;     Ttr, Trot, Tvib, Tel;
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Thermal equilibrium: ni ≡
Ni

gi
= ce−Ei /kbT

(N2

g2
−
N1
g1
) ≡ (n2 − n1) = n1 (e

−(E2 −E1 )i /kbT −1)

n2
n1
= e−(E2 −E1 )i /kbT

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

F(v)

v  

At thermal equilibrium the lower is a level the high is its population.

E2 > E1 n2 < n1

Apart from degeneracy, the ground state is always the most populated
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Rate Equation Approach

Interaction between radiation and matter

state 1

state 2

state 1

state 2

Before After

hν

 

ABSORPTION
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Spontaneous emission

state 1

state 2

state 1

state 2

Before After

hν

 

Stimulated emission

state 1

state 2

state 1

state 2

Before After

2hνhν
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Einstein Coefficients

Absorption:
dN2

dt
= B12 ρ(ν12 )N1

Spontaneous emission:
dN2

dt
= -A21 N2

N2 = c·exp(−A21t),     τ = 1
A21

Stimulated emission:

dN2

dt
= −B21 ρ(ν12 )N2

1

2

B12ρ
A21 B21ρ

 
The systems are at equilibrium (T) !

N = N1 + N2

ρ(ν ) :    δE = ρ(ν ) ⋅δV ⋅δν;    

[ρ(ν )]= J ⋅ s
cm3 =

J
cm3 ⋅Hz

;

 δn = δE
hν

= ρ(ν ) ⋅δV ⋅δν
hν

;

Spectral density of energy:

Spectral density of photons:
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System in equilibrium: dN2

dt
=
dN1
dt

= 0

B12 ρ(ν12 )N1 − A21N2 − B21 ρ(ν12 )N2 = 0

B12 ρ(ν12 )N1 = A21N2 + B21 ρ(ν12 )N2 = (A21 + B21 ρ(ν12 ))N2

N2

N1

=
B12 ρ(ν12 )

A21 + B21 ρ(ν12 )

Taking into account: N2

N1

=
g2
g1
e
−
(E2 −E1 )
kbT =

g2
g1
e
−
hν12
kbT

B12 ρ(ν12 )
A21 +B21 ρ(ν12 )

= g2
g1
e
− hν12
kbT
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ρ(ν12 ) =
A21

g2
g1
e
−
hν12
kbT

B12 − B21
g2
g1
e
−
hν12
kbT

=
A21

B12
g1
g2
e
hν12
kbT − B21

From Planck’s law of black body radiation: ρ(ν12 ) =
8πhν 3

c3
1

e
hν
kbT −1

8πhν12
3

c3
1

e
hν12
kbT −1

=
A21

B12
g1
g2
e
hν12
kbT − B21

1) B12
g1
g2

= B21, A21 =
8πh
c3
·ν12
3 B212) τ sp ∝

1
ν 3
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B12
g1
g2

= B21,

A21 =
8πh
c3
·ν12
3 B21

τ sp ∝
1
ν 3

Einstein Coefficients

Apart from degeneracy, the probability for a 
molecule to absorb and to emit a photon is the same.

Intensity of spontaneous emission (fluorescence) 
scales up with photon energy:
Electronic:  l= 0.3-0.7 µm
Vibrational: l= 3-10 µm; => 103 times weaker
Rotational: l= 103-104 µm; => 106-107 times weaker

Consistently, lifetime of electronic states is 103 and 
107 times shorter than of vibrational and rotational 
states, respectively. 



Spectral lineshape
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state 1

state 2

state 1

state 2

Before After

hν
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0.5
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n

Photon energy, hν



Spectral lineshape
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Δν ≥

1
2πτ

Uncertainty principle:

1. Natural linewidth:

  ΔE τ ≥  or   (ΔE = h Δν)

   
Δ ν ≥

1
2πcτ

(cm-1);
  
τ =

1
A
∝

1
ν 3

 
g(ν) =

Δν / 2π
(ν − ν0 )2 + Δν 2 / 4

Lorentzian:

  Δ ν ∝ ν
3

Life-time spectral broadening:

1.0

0.5

0.0R
el

at
iv

e 
ab

so
rp

tio
n

Photon energy, hν
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2. Pressure broadening:

  
Δν ∝

1
τ coll   

(τ coll ∝
1
P

)  Δν = b P (b ~ 10 MHz per mBar)

Homogeneous broadening (Lorentzian)

3.  Power broadening

n1 ≅ n2
n1∝ cos

2(2π ft)
n2 ∝ sin

2(2π ft)

  
Δν =

1
τ
≅ f

4  Transient time broadening

d
v

t ≅ d/v
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Inhomogeneous Broadening

Doppler Broadening: 

  
νa = ν0 1−

va

c
#

$%
&

'(

−1

⇒Va =
(ν − ν0 )c

ν

 V


 c


+V -V



dn(V ) = p(V )dV ;  p(V ) = m
2π kbT

⎛

⎝⎜
⎞

⎠⎟

1/2

e
−mV

2

2kbT

dn(V ) = p(V )·dV
dν
dν ≡ g(ν )dν

dV
dν

=
ν0 ⋅c
ν 2
!
c
ν0

 ⇒

g(ν ) = p(V )· c
ν0

= c
ν0

m
2π kbT

⎛

⎝⎜
⎞

⎠⎟

1/2

e
−mV

2

2kbT

  
Δν =

2ν0

c
2kbT ln2

m
#

$%
&

'(

1/ 2

Δ !ν = 7.1⋅10−7 !ν0
T
m

(cm-1, m is in a.m.u.)

Doppler Broadening: 
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Gaussian line shape

Inhomogeneous Broadening

  
νa = ν0 1−

va

c
#

$%
&

'(

−1

⇒Va =
(ν − ν0 )c

ν

  
gD (v) =

1
ν0

mc2

2πkbT
#

$
%

&

'
(

1/ 2

e
−

mc2 (ν −ν0 )2

2kbTν0
2
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Thermal congestion:

n

1970019600195001940019300

Total excitation Wavenumber, cm-1

CH3OH

Inhomogeneous Broadening

6n1


