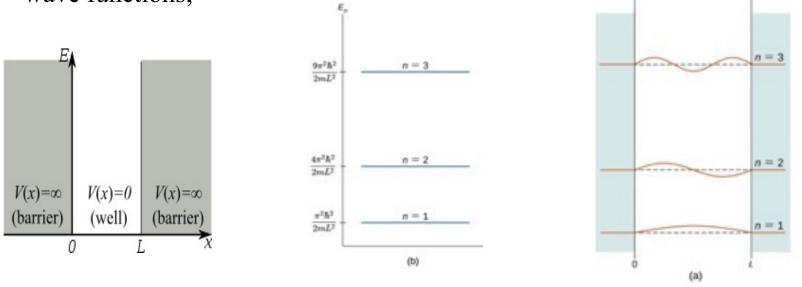
Some facts from quantum mechanics

Molecule is a confined system, => molecular energy is quantized;

Solving Schrödinger equation outputs discreet energy levels and molecular

wave functions;



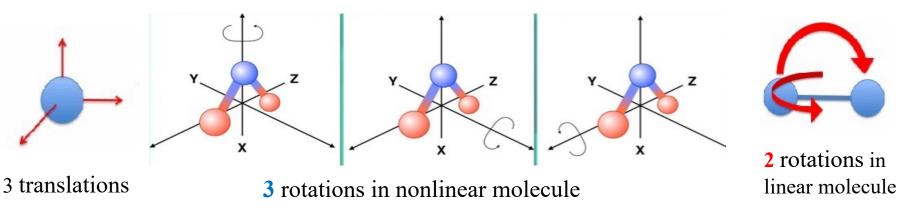
A free molecule, as a system of bound nuclei has 3 types of confined motions: **translational** as a whole, **rotational** and **vibrational** for nuclei. In addition, electrons that bind the nuclei also confined: **electronic** motion.

• In the adiabatic <u>approximation</u> different motions can be considered separately.

$$V_{el} >> V_{vib} >> V_{rot}$$

Molecular degrees of freedom

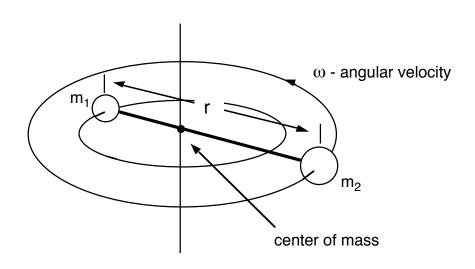
- A system of *N* particles owns 3*N* degrees of freedom, =>
- A nonlinear molecule has 3 translations and 3 rotations around 3 space axis;
- There are however only 2 rotations for a linear molecule (no rotation around axis of molecule), they are equal (degenerate);
- This leaves 3N-6 vibrations for non-linear and 3N-5 vibrations for linear molecules.



3N-6 vibrations

3N-5 vibrations

Rotational motion in a rigid rotor



Energy levels:
$$E_{rot} = \frac{\hbar^2 J(J+1)}{2\mu r^2} = \frac{\hbar^2 J(J+1)}{2I};$$

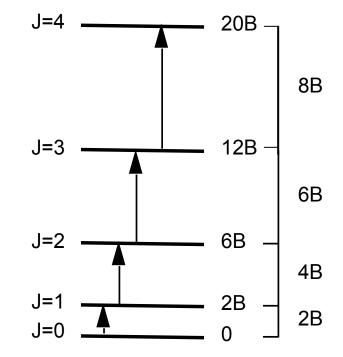
$$I = \frac{m_1 m_2}{m_1 + m_2} r^2 = \mu r^2,$$
 $\mu = \frac{m_1 m_2}{m_1 + m_2},$ $J=0, 1, 2,...$

Rotational energy levels:

$$E_{rot} = BJ(J+1);$$

$$B = \frac{\hbar^2}{2I}$$
, J=0, 1, 2,...

$$H_2 \implies B=60.8 \text{ cm}^{-1}$$



 E_J

Spacing increases by 2B!

Vibrational motion: harmonic oscillator

$$F = -kx$$
;

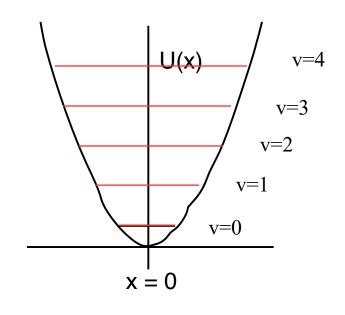
$$U = -1/2kx^2$$
;

Energy levels:

$$E_{\text{vib}} = \hbar \omega (v + \frac{1}{2}),$$

$$v = 0,1,2...$$

$$\omega = \sqrt{k/\mu}$$



 H_2 4395.2 cm⁻¹;

CO 2170.21 cm⁻¹;

 N_2 1460.37 cm⁻¹;

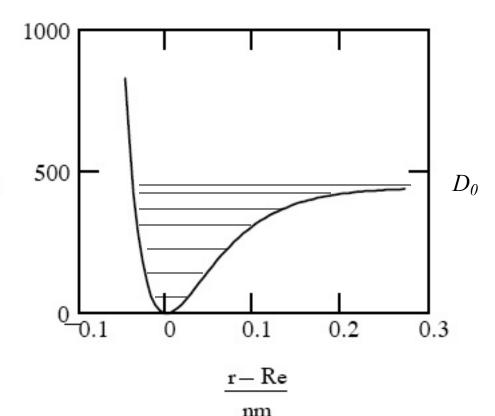
 O_2 1580.36 cm⁻¹.

Vibrational motion: anharmonic oscillator

Morse potential

$$R \to 0$$
 $U \to 0$;
 $R \to \infty$ $U \to D_0$

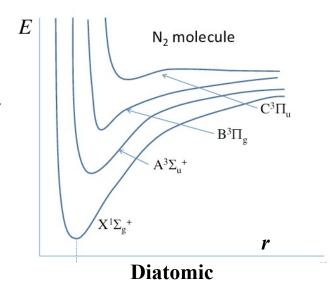
$$E(r) := D_{e} \cdot (1 - \exp(-\beta \cdot (r - Re)))^{2}$$

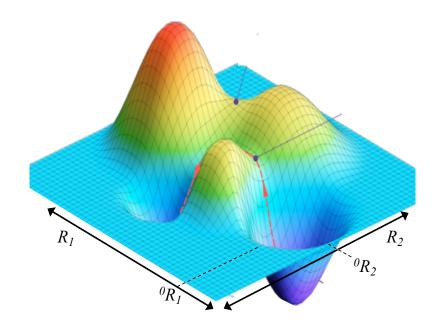


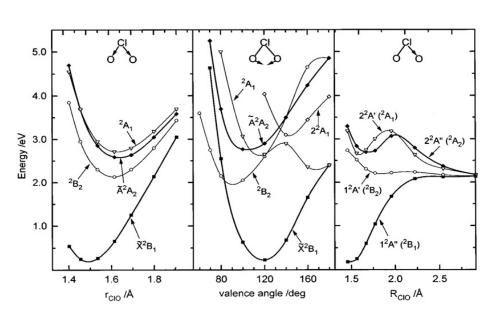
$$E_{\text{vib}}(n) = hc \cdot [(n+1/2) \cdot \omega_e - (n+1/2)^2 \cdot \omega_e \cdot \chi_e]$$

Electronic energy levels

- Electronic energy depends on position of nuclei =>
- *EE* is a function of 3N-6 or 3N-5 vibrational coordinates (lengths of bonds, angles between bonds).
- Electronic energy is a multi-dimensional surface. Electronic states are difficult to calculate; they have complex notations due to many quantum numbers assigned to each state.







Cuts of PES for a triatomic molecule

Spectroscopic transitions

Before

After

E₂ — state 2

photon in
$$E_1$$
 state 1
$$v_0 = \frac{E_2 - E_1}{h}$$

E₁ — state 1

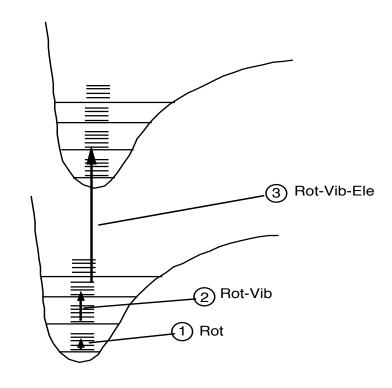
Rotational:

 10^{-3} - 10^{-1} m,

Rotational-vibrational (rovibrational): 3-30 micron,

Rovibrational-electronic (rovibronic): 500-100 nm.

Absorption (emission) changes translational energy only very tiny



Probability of spectroscopic transitions

In Born Oppenheimer approximation the state of a molecule:

$$\Psi = \psi_{el}(r, R_e) \cdot \psi_{vib}(R) \cdot , \psi_{rot}(\varphi),$$

• Absorption, spontaneous and stimulated emissions occur due to a change of transition electric dipole moment (DM) of a molecule.

$$\mu(\vec{r}) = \sum_{k} q_k \cdot \vec{r}_k$$
, Sum over all nuclei and electrons; $\vec{r} \in (r, R, \varphi)$.

• The probability for optical transition $2 \leftarrow 1$ is determined by the square of transition DM integral M_{21} :

$$\begin{split} \vec{M}_{21} \left\langle \Psi' \middle| \vec{\mu} \middle| \Psi'' \right\rangle &= \int \Psi'(\vec{r}) \hat{\mu}(\vec{r}) \Psi''(\vec{r}) d\vec{r}, \\ M_{21} &= \iiint \psi'_{el}(r, R_e) \psi'_{vib}(R) \psi'_{rot}(\varphi) \cdot (\hat{\mu}_{el} + \hat{\mu}_{vib} + \hat{\mu}_{rot}) \psi''_{el}(r, R_e) \psi''_{vib}(R) \psi''_{rot} d\vec{r}, \\ d\vec{r} &\equiv dr \cdot dR \cdot d\varphi. \end{split}$$

Because r, R and φ are independent this expression can be simplified.

Probability of spectroscopic transitions

$$M_{21} = \iiint \psi'_{el}(r, R_e) \psi'_{vib}(R) \psi'_{rot} \cdot (\mu_{el} + \mu_{vib} + \mu_{rot}) \psi''_{el}(r, R_e) \psi''_{vib}(R) \psi''_{rot} d\vec{r},$$
The three parts of the triple integral can be recovered:

The three parts of the triple integral can be rearranged:

$$M'_{21} = \int (\psi'_{el} \mu_{el} \psi''_{el}) dr \cdot \int (\psi'_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi;$$

$$M''_{21} = \int (\psi'_{el} \psi''_{el}) dr \cdot \int (\psi'_{vib} \mu_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi;$$

$$M'''_{21} = \int (\psi'_{el}\psi''_{el})dr \cdot \int (\psi'_{vib}\psi''_{vib})dR \cdot \int (\psi'_{rot}\mu_{rot}\psi''_{rot})d\varphi.$$

For a rovibronic transition: $\psi'_{el} \perp \psi''_{el}$; while $\psi'_{vib}, \psi''_{vib}$ and $\psi'_{rot}, \psi''_{rot}$ are not.

$$=> M''=M'''=0: M_{21}^{rve} = \int (\psi'_{el}\mu_{el}\psi''_{el})dr \int (\psi'_{vib}\psi''_{vib})dR \int (\psi'_{rot}\psi''_{rot})d\varphi;$$

For a rovibrational transition: $\psi'_{el} = \psi''_{el}$; $\psi'_{vib} \perp \psi''_{vib}$.

$$=> M'=M'''=0: M_{21}^{rv}=1\cdot\int (\psi'_{vib}\mu_{vib}\psi''_{vib})dR\cdot\int (\psi'_{rot}\psi''_{rot})d\varphi.$$

For a purely rotational transition: $\psi'_{el} = \psi''_{el}$; $\psi'_{vib} = \psi''_{vib}$; $\psi'_{rot} \perp \psi''_{rot}$.

=> M'=M''=0:
$$M_{21}^r = \int (\psi'_{rot} \mu_{rot} \psi''_{rot}) d\varphi;$$

Probability of rovibronic transitions

$$M_{21}^{rve} = \int (\psi'_{el} \mu_{el} \psi''_{el}) dr \int (\psi'_{vib} \psi''_{vib}) dR \int (\psi'_{rot} \psi''_{rot}) d\varphi;$$

The probability for a molecule to change its quantum state due to absorption (emission) of a photon is proportional to M_{21}^2 .

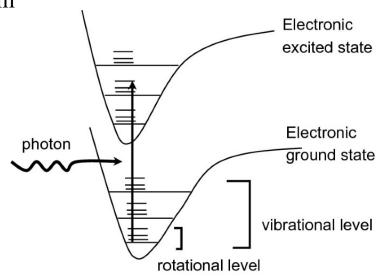
The 1st factor is called electronic TDM; the square of the 2nd factor is Franck-Condon.

The coordinates are complex:

$$r = (r_1, ..., r_m; s_1, ..., s_m);$$

$$R = (R_1, ..., R_n; I_1, ..., I_n);$$

$$\varphi = (\varphi, \theta)$$
electron spin
$$I_1, ..., I_n;$$
nuclear spin



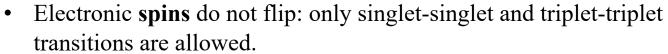
Often, only valent electrons can change their orbitals upon excitation, => The number of electrons (and of their r) to consider is often a few in a given spectral range.

Probability of rovibronic transitions

$$M_{21}^{rve} \neq \int (\psi'_{el}\mu_{el}\psi''_{el})dr \int (\psi'_{vib}\psi''_{vib})dR \int (\psi'_{rot}\psi''_{rot})d\varphi;$$

There are some strict physical rules:

- Nuclear spins do not flip upon optical excitation.
 - Example: ortho- and para- water.



• Total **angular momentum** of (molecular + spin of photon, $S=\pm 1$, 0) must be conserved.=> $J_{rot}=\pm 1$ (always), =0 (for molecules of certain symmetries)

Electronic TDM is non-zero, if the sub-integral function is **even** for the components of its multi-dimensional variable that change upon excitation (unchanged are equal). =>

$$\int_{-\infty}^{+\infty} even(r) \cdot o \, dd(r) \cdot even(r) dr = even\Big|_{-\infty}^{+\infty} = 0$$

Whether TDM $\neq 0$ is determined by mutual symmetry of Ψ ', Ψ '', and μ_{el} . This can be determined from the symmetry of a molecule with respect to 5 symmetry operations using point **group symmetry** classification.

The lowest state is always symmetrical => Ψ ' and $\mu_{el}(x, y, z)$ must have, at least, one component of the same group.

Examples of symmetry point groups

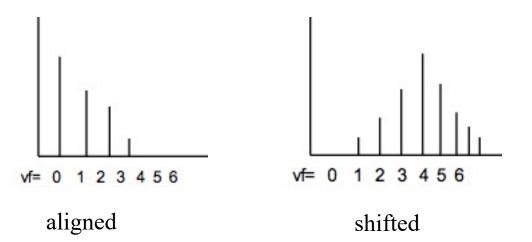
Point group	Symmetry operations ^[14]	Simple description of typical geometry	Example 1	Point group	Symmetry operations ^[14]	Simple description of typical geometry	Example 1
C ₁	Ε	no symmetry, chiral	bromochlorofluoromethane (both enantiomers shown)	C _{2h}	E C ₂ i σ _h	planar with inversion center, no vertical plane	trans-1,2-dichloroethylene
C _s	Εσ _h	mirror plane	thionyl chloride	C_{2v}	$E C_2 \sigma_v(xz) \sigma_v'(yz)$	angular (H ₂ O) or see-saw (SF ₄)	water
Ci	Ei	inversion center	meso-tartaric acid	C _{3h}	$EC_3{C_3}^2\sigma_{ m h}S_3S_3^{5}$	propeller	boric acid
C _{ooy}	E 2C∞ ^Φ ∞σ _V	linear	hydrogen fluoride (and all other heteronuclear diatomic	C _{3v}	Ε 2C ₃ 3σ _ν	trigonal pyramidal	ammonia (if pyramidal inversion is neglected)
$D_{\infty ext{h}}$	E2C∞ ^Φ ∞σ _i i2S∞ ^Φ ∞C ₂	linear with inversion center	oxygen (and all other homonuclear diatomic	C _{4v}	E 2C ₄ C ₂ 2σ _v 2σ _d	square pyramidal	xenon oxytetrafluoride
C ₂	E C₂	"open book geometry", chiral	molecules) hydrogen peroxide	C ₅	E 2C ₅ 2C ₅ ²	five-fold rotational symmetry	C-reactive protein
C ₃	E C ₃ C ₃ ²	propeller, chiral	triphenylphosphine	C _{5v}	E 2C ₅ 2C ₅ ² 5σ _ν	'milking stool' complex	Ni Ni Ni Ni Ni Ni Ni Ni

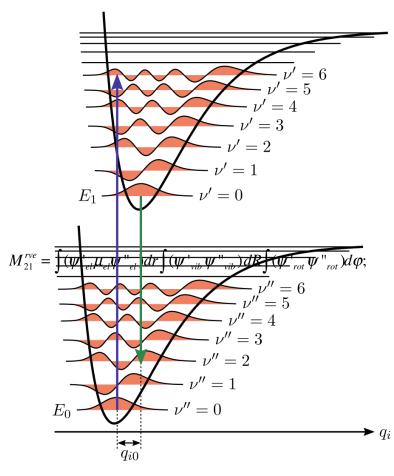
Franck-Condon factor

$$M_{21}^{rve} = \int (\psi'_{el} \mu_{el} \psi''_{el}) dr \int (\psi'_{vib} \psi''_{vib}) dR \int (\psi'_{rot} \psi''_{rot}) d\varphi;$$

$$FCF = \left| \int (\psi'_{vib} \psi''_{vib}) dR \right|^2$$

F-C factor controls intensity of vibronic transitions. Because Ψ'_{vib} and Ψ'_{vib} belong to different electronic states, FCF, in general, is non-zero. It is determined by the overlap of the wavefunctions and reflects alignment of electronic PES:





Transitions are shown vertical because nuclei do not move during electronic transition

$$M_{21}^{rv} = 1 \cdot \int (\psi'_{vib} \mu_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi.$$

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: $\Delta v = \pm 1$; (fundamental)

Anharmonicity adds much weaker transitions with $\Delta v = \pm 2, \pm 3... (1^{st}, 2^{nd},...overtones)$

Typically, intensity of vibrational overtones scales as: $I(\Delta v)/I(1 \leftarrow 0) \sim 10^{\Delta v-1}$

Pure rotational transitions

$$M_{21}^r = \int (\psi'_{rot} \mu_{rot} \psi''_{rot}) d\varphi;$$

Because rotation of a molecule does not change separation of electrons and nuclei, pure rotational transitions (microwave) are only possible for molecules with a permanent dipole moment. Selection rules are $\Delta J = \pm 1$ (fundamental)

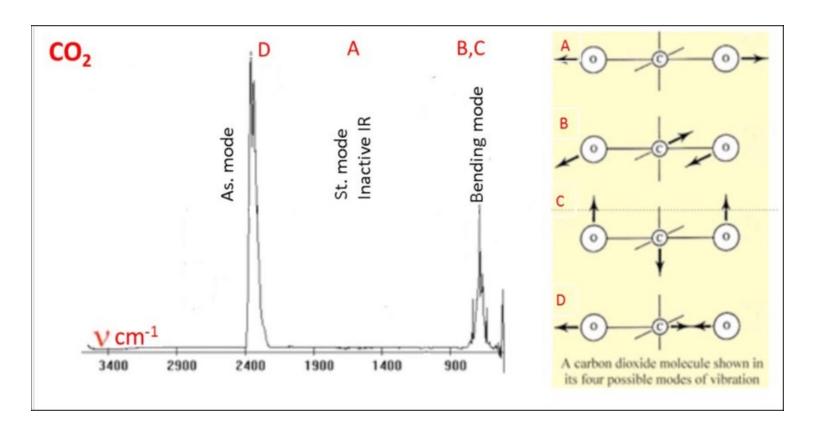
$$M_{21}^{rv} = 1 \cdot \int (\psi'_{vib} \mu_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi.$$

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: $\Delta v = \pm 1$; (fundamental)

Anharmonicity adds much weaker transitions with $\Delta v = \pm 2, \pm 3... (1^{st}, 2^{nd},...overtones)$

Typically, intensity of vibrational overtones scales as: $I(\Delta v)/I(1 \leftarrow 0) \sim 10^{\Delta v-1}$



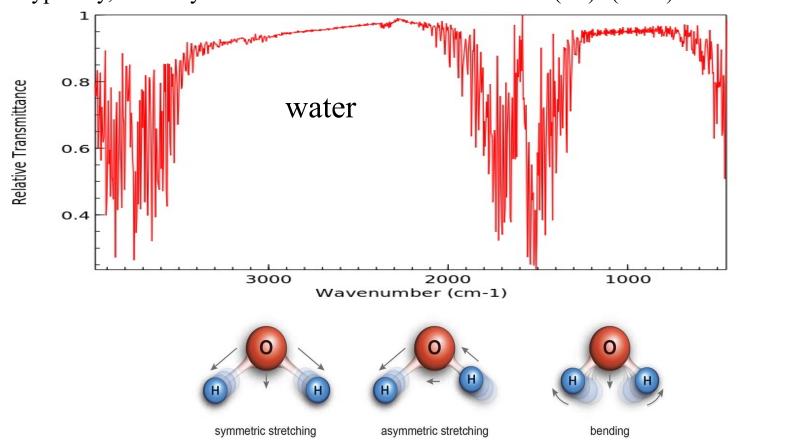
$$M_{21}^{rv} = 1 \cdot \int (\psi'_{vib} \mu_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi.$$

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: $\Delta v = \pm 1$; (fundamental)

Anharmonicity adds much weaker transitions with $\Delta v = \pm 2, \pm 3... (1^{st}, 2^{nd},...overtones)$

Typically, intensity of vibrational overtones scales as: $I(\Delta v)/I(1 \leftarrow 0) \sim 10^{\Delta v-1}$



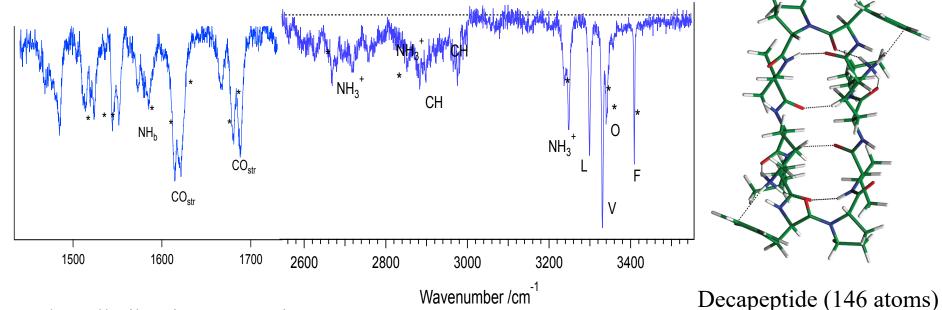
$$M_{21}^{rv} = 1 \cdot \int (\psi'_{vib} \mu_{vib} \psi''_{vib}) dR \cdot \int (\psi'_{rot} \psi''_{rot}) d\varphi.$$

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: $\Delta v = \pm 1$; (fundamental)

Anharmonicity adds much weaker transitions with $\Delta v = \pm 2, \pm 3... (1^{st}, 2^{nd},...overtones)$

Typically, intensity of vibrational overtones scales as: $I(\Delta v)/I(1 \leftarrow 0) \sim 10^{\Delta v-1}$



- All vibrations are active
- ➤ No rotational resolution is possible

Non-radiative transitions

- 1. Intramolecular
- 2. Collisional

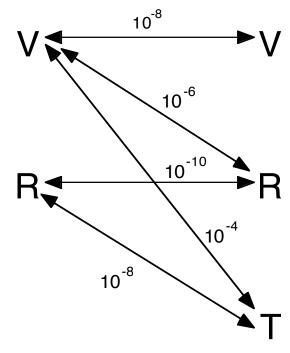
Resonant conditions

$$K \propto \frac{V_{ab}^2}{E_a - E_b};$$

Energy is still conserved!

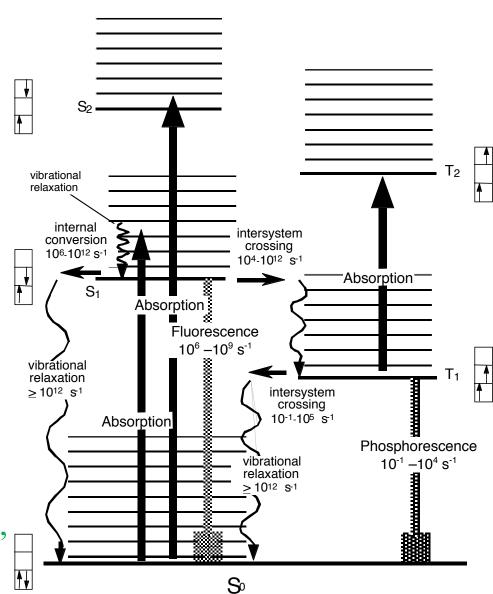
$$\Delta(\sum E^d) = \Delta(\sum E^a);$$

Electronic ground state:



Schematic diagram showing the energy transfer processes occurring in thermal molecular collisions. V, R, and T refer to vibrational, rotational, and translational energy respectively. The numbers are typical values of $P\tau$ (atm s), the bulk "relaxation time" characterizing the particular mode of energy transfer (Adapted from W. H. Flygare, Accounts chem. Res 1, 121 (1968)).

Non-radiative transitions



The lowest triplet state is labeled as T_1

Electronic ground state, S_0 , is always singlet

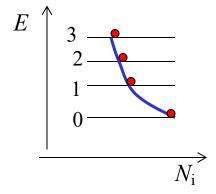
State populations

Apart from M_{21}^2 , intensity of a transition depends on number of molecules in the state Ψ_1

Temperature: T; T_{tr}, T_{rot}, T_{vib}, T_{el};

Boltzmann distribution:

$$N_i = c g_i e^{-E_i/k_b T}$$



Proportionality constant:

$$\sum_{i} N_{i} = N = c \sum_{i} g_{i} e^{-E_{i}/k_{b}T}$$

$$c = \frac{N}{\sum_{i} g_{i} e^{-E_{i}/k_{b}T}}$$

$$N_{i} = \frac{N g_{i} e^{-E_{i}/k_{b}T}}{\sum_{i} g_{i} e^{-E_{i}/k_{b}T}}$$

$$n_{i} \equiv \frac{N_{i}}{g_{i}} = c e^{-E_{i}/k_{b}T}$$

$$\frac{n_2}{n_1} = e^{-(E_2 - E_1)_i / k_b T}$$

$$(\frac{N_2}{g_2} - \frac{N_1}{g_1}) = (n_2 - n_1) = n_1 (e^{-(E_2 - E_1)_i / k_b T} - 1)$$

$$E_2 > E_1 \implies n_2 < n_1$$

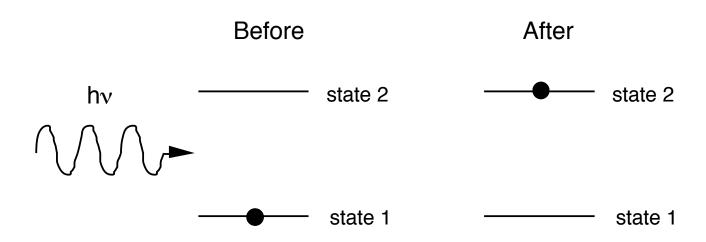
At thermal equilibrium the lower is a level the high is its population.

Apart from degeneracy, the ground state is always the most populated

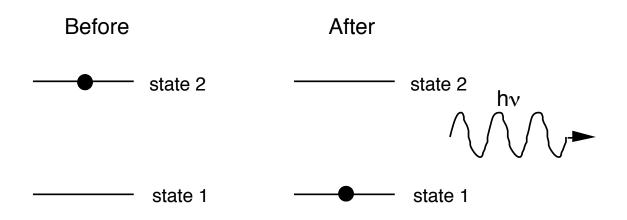
Rate Equation Approach

Interaction between radiation and matter

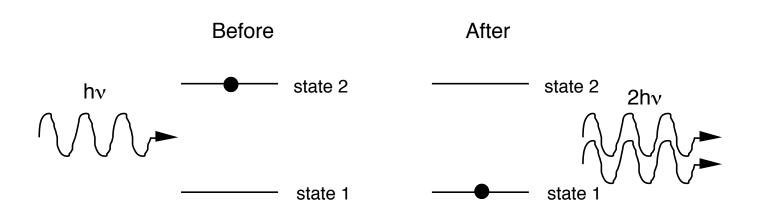
ABSORPTION



Spontaneous emission



Stimulated emission



Einstein Coefficients

$$N = N_1 + N_2$$

Spectral density of energy: $\rho(v)$: $\delta E = \rho(v) \cdot \delta V \cdot \delta v$;

Absorption:

$$\frac{dN_2}{dt} = B_{12} \rho(v_{12}) N_1$$

$$[\rho(v)] = \frac{J \cdot s}{cm^3} = \frac{J}{cm^3 \cdot Hz};$$

Spectral density of photons: $\delta n = \frac{\delta E}{h v} = \frac{\rho(v) \cdot \delta V \cdot \delta v}{h v}$;

Spontaneous emission:

$$\frac{dN_2}{dt} = -A_{21} N_2$$

$$N_2 = c \cdot \exp(-A_{21}t), \quad \tau = \frac{1}{A_{21}}$$

2

Stimulated emission:

$$\frac{dN_2}{dt} = -B_{21} \rho(v_{12}) N_2$$

The systems are at equilibrium (T)!

$$\frac{dN_2}{dt} = \frac{dN_1}{dt} = 0$$

$$B_{12} \rho(v_{12}) N_1 - A_{21} N_2 - B_{21} \rho(v_{12}) N_2 = 0$$

$$B_{12} \rho(v_{12}) N_1 = A_{21} N_2 + B_{21} \rho(v_{12}) N_2 = (A_{21} + B_{21} \rho(v_{12})) N_2$$

$$\frac{N_2}{N_1} = \frac{B_{12} \rho(v_{12})}{A_{21} + B_{21} \rho(v_{12})}$$

Taking into account:
$$\frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-\frac{(E_2 - E_1)}{k_b T}} = \frac{g_2}{g_1} e^{-\frac{h v_{12}}{k_b T}}$$

$$\frac{B_{12} \rho(v_{12})}{A_{21} + B_{21} \rho(v_{12})} = \frac{g_2}{g_1} e^{-\frac{hv_{12}}{k_b T}}$$

$$\rho(v_{12}) = \frac{A_{21} \frac{g_2}{g_1} e^{-\frac{hv_{12}}{k_b T}}}{B_{12} - B_{21} \frac{g_2}{g_1} e^{-\frac{hv_{12}}{k_b T}}} = \frac{A_{21}}{B_{12} \frac{g_1}{g_2} e^{\frac{hv_{12}}{k_b T}} - B_{21}}$$

From Planck's law of black body radiation: $\rho(v_{12}) = \frac{8\pi h v^3}{c^3} \frac{1}{e^{\frac{hv}{k_b T}} - 1}$

$$\frac{8\pi h v_{12}^3}{c^3} \frac{1}{e^{\frac{h v_{12}}{k_b T}} - 1} = \frac{A_{21}}{B_{12} \frac{g_1}{g_2} e^{\frac{h v_{12}}{k_b T}} - B_{21}}$$

1)
$$\left(B_{12} \frac{g_1}{g_2} = B_{21},\right)$$

$$\tau_{sp} \propto \frac{1}{v^3}$$

2)
$$\left(A_{21} = \frac{8\pi h}{c^3} \cdot v_{12}^3 B_{21}\right)$$

Einstein Coefficients

$$B_{12}\frac{g_1}{g_2} = B_{21},$$

Apart from degeneracy, the probability for a molecule to absorb and to emit a photon is the same.

$$A_{21} = \frac{8\pi h}{c^3} v_{12}^3 B_{21}$$

Intensity of spontaneous emission (fluorescence) scales up with photon energy:

Electronic: $\lambda = 0.3-0.7 \mu m$

Vibrational: $\lambda = 3-10 \mu m$; => $10^3 \text{ times weaker}$

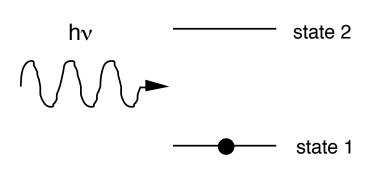
Rotational: $\lambda = 10^3 - 10^4 \, \mu \text{m}$; => $10^6 - 10^7 \, \text{times weaker}$

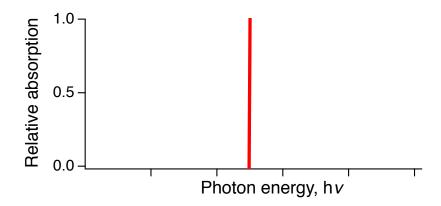
$$\tau_{sp} \propto \frac{1}{v^3}$$

Consistently, lifetime of electronic states is 10³ and 10⁷ times shorter than of vibrational and rotational states, respectively.

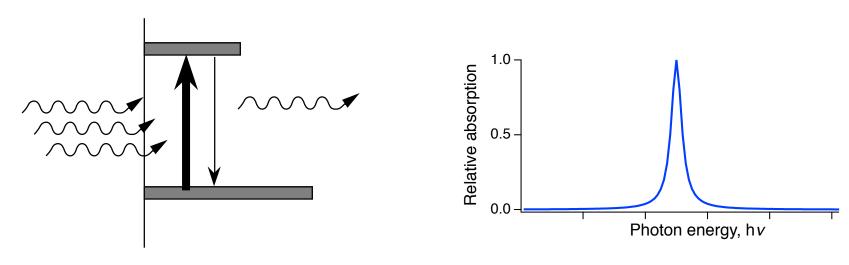
Spectral lineshape

Before





Spectral lineshape



Life-time spectral broadening:

Uncertainty principle:
$$\Delta E \tau \ge \hbar$$
 or $(\Delta E = h \Delta v)$ $\Delta v \ge \frac{1}{2\pi\tau}$

$$\Delta v \ge \frac{1}{2\pi\tau}$$

1. Natural linewidth:
$$\tau = \frac{1}{A} \propto \frac{1}{v^3}$$
 $\Delta \tilde{v} \ge \frac{1}{2\pi c\tau}$ (cm⁻¹); $\Delta \tilde{v} \propto \tilde{v}^3$

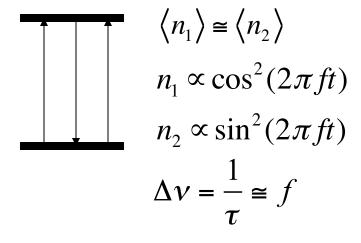
Lorentzian:
$$g(v) = \frac{\Delta v / 2\pi}{(v - v_0)^2 + \Delta v^2 / 4}$$

Homogeneous broadening (Lorentzian)

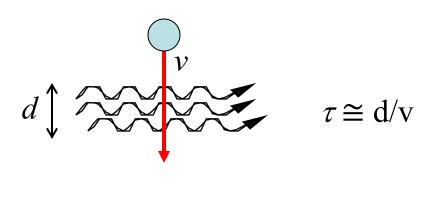
2. Pressure broadening:

$$\Delta v \propto \frac{1}{\tau_{coll}} \quad (\tau_{coll} \propto \frac{1}{P}) \quad \Longrightarrow \quad \Delta v = bP \quad (b \sim 10 \text{ MHz per mBar})$$

3. <u>Power broadening</u>



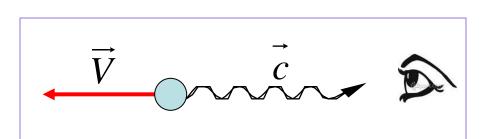
4 Transient time broadening

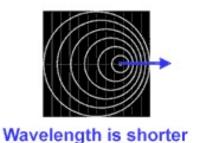


Inhomogeneous Broadening

Doppler Broadening:

$$\mathbf{v}_a = \mathbf{v}_0 \left(1 - \frac{\mathbf{v}_a}{c} \right)^{-1} \Rightarrow V_a = \frac{(\mathbf{v} - \mathbf{v}_0)c}{\mathbf{v}}$$

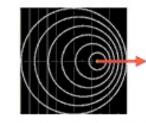




when approaching

+V

Stationary waves



Wavelength is longer when receding

-V

Inhomogeneous Broadening

Doppler Broadening:
$$v_a = v_0 \left(1 - \frac{v_a}{c} \right)^{-1} \Rightarrow V_a = \frac{(v - v_0)c}{v}$$

$$dn(V) = p(V)dV; p(V) = \left(\frac{m}{2\pi k_b T}\right)^{1/2} e^{-\frac{mV^2}{2k_b T}}$$

$$dn(V) = p(V) \cdot \frac{dV}{dv} dv \equiv g(v) dv$$

$$\frac{dV}{dv} = \frac{v_0 \cdot c}{v^2} \simeq \frac{c}{v_0} \implies$$

$$g(v) = p(V) \cdot \frac{c}{v_0} = \frac{c}{v_0} \left(\frac{m}{2\pi k_0 T}\right)^{1/2} e^{-\frac{mV^2}{2k_b T}}$$

$$\frac{dV}{dv} = \frac{v_0 \cdot c}{v^2} \approx \frac{c}{v_0} \Rightarrow$$

$$g(v) = p(V) \cdot \frac{c}{v_0} = \frac{c}{v_0} \left(\frac{m}{2\pi k_b T}\right)^{1/2} e^{-\frac{mv^2}{2k_b T}v_0^2}$$

$$Gaussian line shape$$

$$Gaussian line shape$$

$$\Delta v = \frac{2v_0}{c} \left(\frac{2k_b T \ln 2}{m}\right)^{1/2} \implies \Delta \tilde{v} = 7.1 \cdot 10^{-7} \tilde{v}_0 \sqrt{\frac{T}{\overline{m}}} \qquad \text{(cm-1, m is in a.m.u.)}$$

Inhomogeneous Broadening

Thermal congestion:

