Some facts from quantum mechanics

Molecule is a confined system, => molecular energy is quantized;
Solving Schrodinger equation outputs discreet energy levels and molecular
wave functions;
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A free molecule, as a system of bound nucle1 has 3 types of confined motions:
translational as a whole, rotational and vibrational for nuclei.
In addition, electrons that bind the nucle1 also confined: electronic motion.

In the adiabatic approximation different motions can be considered separately.

Vel >> Vvib >> Vrot



Molecular degrees of freedom

» A system of NV particles owns 3V degrees of freedom, =>

* A nonlinear molecule has 3 translations and 3 rotations around 3 space axis;

e There are however only 2 rotations for a linear molecule (no rotation around
axis of molecule), they are equal (degenerate);

* This leaves 3N-6 vibrations for non-linear and 3N-5 vibrations for linear

molecules.
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Rotational motion 1n a rigid rotor
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Rotational energy levels:
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Vibrational motion: harmonic oscillator

F= -kx; U=-1/2kx?;
LU(x) v=4
Energy levels: )
E =hw(V+%), v=0,1,2... v=2
v=I

_ |k S

2=\ ;
Xx=0

H, 4395.2 cm;

N, 1460.37 cm;

CO 2170.21 cml;

O,

1580.36 cm!.



Vibrational motion: anharmonic oscillator

Morse potential
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Electronic energy levels

 Electronic energy depends on position of nuclei => £ Umolecule

« FEFE is a function of 3N-6 or 3N-5 vibrational :
coordinates (lengths of bonds, angles between bonds).

» Electronic energy 1s a multi-dimensional surface. ~ B,
Electronic states are difficult to calculate; they have
complex notations due to many quantum numbers
assigned to each state.

I I
s 4N I 4% -
40 | - -
2 2%A' Ay
A1
330 .
>
s |
[
o
I | |
2 A2A2 12A- (232)
1.0 | \ -
L X8, i 12A" (%B,)
1 " 1 " 1 _ P P 1 n 1 " 1
1.4 16 1.8 80 120 160 15 20 25

Teio /A valence angle /deg Reio /A

2D PES for triatomic molecule

Cuts of PES for a triatomic molecule



Spectroscopic transitions
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Probability of spectroscopic transitions

In Born Oppenheimer approximation the state of a molecule:

\{l — l//el (r?Re) ) inb (R).’Wi’ot (¢)’

« Absorption, spontaneous and stimulated emissions occur due to a change of
transition electric dipole moment (DM) of a molecule.

W)= 2% -7, Sum over all nuclei and electrons; re(,R,p).
k

» The probability for optical transition 2 € 1 is determined by the square of
transition DM integral M, ,:

M, (W |1 ¥') = [ ()Y (7)dr,
My, = [[[w'a Ry R (@) (R + Ly + L, W (r R (RO, dF
dF = dr-dR-do.

Because r, R and ¢ are independent this expression can be simplified.
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Probability of spectroscopic transitions

M21 ~ J‘J‘J‘l//'el (r’Re )l//'vib (R)l//'rot' (al’tel + luvib + )l//”el (r’Re)l//”vib (R)l//”rot d’_;’

The three parts of the triple integral can be rearranged:
My = [y dr- [, v )dR- [, v, de:

M= [ " e (W' " AR [, v, )de:
M= [ pdr- [, v )dR (W', 0,y ).

For a rovibronic transition: ¥ ', LW¥",; while ', .w" . and y' ,w" arenot.
=> M=M7=0: M3y = [y " dr [, v ) dR [, v, e
For a rovibrational transition: ¥ ', =V s V', LYW,

=> M=M7=0: My =1-[ W', 10" AR [, v, )do.

For a purely rotational transition: ¥ ', =¥",; W', =¥ ", v, Lw" .

=> M’=M""=0: M£1 = J.(l//'rot w"rot )d(D’
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Probability of rovibronic transitions

My = [y dr [ v dR [, v, e

The probability for a molecule to change its quantum
state due to absorption (emission) of a photon is
proportional to M,2 .

The 15t factor 1s called electronic TDM;
the square of the 2 factor is Franck-Condon.

Electronic
excited state

Electronic
ground state

\ vibrational level

R:(Rl""Rn; Il’In)’ - rotational level
Q= (¢ 0) nuclear spin

photon

The coordinates are complex:

electron spin
F=(r,..r,; 8,..S,)

el )

Often, only valent electrons can change their orbitals upon excitation, =>

The number of electrons (and of their r) to consider is often a few in a given spectral
range.
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Probability of rovibronic transitions

(l// 'elll’Lell// ”el )er- (l// 'vib l// ”vib)dRJ- (l// ‘rot l// ”rot )dgo’

There are some strict physical rules: 1‘ 3 tgfft)%%[ ‘ 1‘
Nuclear spins do not flip upon optical excitation.

Example: ortho- and para- water.
Electronic spins do not flip: only singlet-singlet and triplet-triplet singlet
transitions are allowed. T@‘\\ pare i
Total angular momentum of (molecular + spin of photon, S==1,
0) must be conserved.=> J,,==1 (always), =0 (for molecules of
certain symmetries)

rve
M,

Electronic TDM is non-zero, if the sub-integral function is even for the components of
its multi-dimensional variable that change upon excitation (unchanged are equal). =>

oo

J_ even(r)-odd(r)-even(r)dr = even|™"=0

—0Q

Whether TDM # 0 is determined by mutual symmetry of ¥’, ¥, and ., . This can
be determined from the symmetry of a molecule with respect to 5 symmetry
operations using point group symmetry classification.

The lowest state is always symmetrical => ¥’ and (X, y, z) must have, at least, one
component of the same group.



Examples of symmetry point groups

Point Simple description of aionb bics| Geowepni
Symmetry operations!!4! P i Example 1 2AwwepA obeisfiouz(, sbjom Exswbie |
group typical geometry bolug 2lwbje gezcubyiou o}
) 7 L c EC planar with inversion center,
Cy E no symmetry, chiral H H 2h Oh no vertical plane
E ] | F ]
bromochlorofluoromethane (both enantiomers
trans-1,2-dichloroethylene
shown)
c E : angular (H,0) or see-saw
Cs Eop, mirror plane 2v G2 0,(x2) 0,/(y2) (SFa)
thionyl chloride water
meso-tartaric acid boric acid
C. E 2C3 30, trigonal pyramidal
Coov E 2C® ®0, linear O B G S0y 4 L ,
hydrogen fluoride
(and all other heteronuclear diatomic ammonia (if pyramidal inversion is neglected)
molecules)
Cav E2C4 Cp 20y 204 square pyramidal
Doty E 2Cx® 00; 125:% ©Cp linear with inversion center
oxygen xenon oxytetrafluoride
(and all other homonuclear diatomic
molecules) @ @
Cs E2C52Cs? five-fold rotational symmetry @ %
C EC "open book geometry", chiral @
C-reactive protein
hydrogen peroxide
|
o : Ni
s ECy G2 propeller, chiral Csy E 2Cs 2Cs” 50y 'milking stool' complex |
N
(o]
triphenylphosphine Ni(CsHs)(NO)




N Franck-Condon factor

M3y = [ " DAE v v ) AR (v, v,

2

FCF = U(W s Wi VAR

F-C factor controls intensity of vibronic transitions.
Because Y, and¥', belong to different electronic
states, FCF, in general, is non-zero. It is determined by
the overlap of the wavefunctions and reflects alignment
of electronic PES:

“I ] ||1

vi=0 123456 vie 0 123456

aligned shifted

Transitions are shown vertical because nuclei do not move during electronic transition
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Probability for rovi

brational transitions

M;l} — 1 ) J‘(l// 'vib ILtvibl// ”vib)dR | 4

Rotational selection rules remain the same;

. (l// 'rot '7” ”rot )d(P

Vibrational selection rules for harmonic oscillator: Av==1; (fundamental)

Anharmonicity adds much weaker transitions with Av==42, £3, .. (1st, 2nd  overtones)

Typically, intensity of vibrational overtones scales as: I(Av)/I(1€0) ~10 Av-1

Pure rotational transitions

Mgl = J-(l// 'rot :Llrotl// ”rot )dgo’

Because rotation of a molecule does not change separation of electrons and nuclei,
pure rotational transitions (microwave) are only possible for molecules with a
permanent dipole moment. Selection rules are AJ == 1 (fundamental)
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Probability for rovibrational transitions

M;} — 1 ) J.(l// 'vib Il’tvibl// ”vib)dR | s (l// 'rot l// ”rot )d(p

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: Av==1; (fundamental)
Anharmonicity adds much weaker transitions with Av=22, 3., (1st, 20 overtones)
Typically, intensity of vibrational overtones scales as: I(Av)/I(1€0) ~10 Av-1
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ns four po ibie modes of vibrat
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Probability for rovibrational transitions

M;‘l) — 1 ) J.(l// 'vib ll’tvibl// ”vib)dR | ‘. (l// 'rot l// ”rot )d(p

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: Av==1; (fundamental)
Anharmonicity adds much weaker transitions with Av=22, 3., (1st, 20 overtones)
Typically, intensity of vibrational overtones scales as: I(Av)/I(1€0) ~10 Av-1

water

Relative Transmittance

3000 2000 1000
Wavenumber (cm-1)

* P &

symmetric stretching asymmetric stretching bending
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Probability for rovibrational transitions

MZ) — 1 ) J.(l// 'vib ILtvibl// ”vib)dR | s (l// 'rot l// ”rot )d(p

Rotational selection rules remain the same;

Vibrational selection rules for harmonic oscillator: Av==1; (fundamental)
Anharmonicity adds much weaker transitions with Av=22, 3., (1st, 20 overtones)
Typically, intensity of vibrational overtones scales as: I(Av)/I(1€0) ~10 Av-1

NH,

Costr

COg

1500 1600 1700 2600 2800 3000 3200 3400

Wavenumber fom’ Decapeptide (146 atoms)

» All vibrations are active
» No rotational resolution is possible
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Non-radiative transitions

1. Intramolecular

2. Collisional

Resonant conditions
2
K e Vab ’
E -E,

a

Energy is still conserved!

ACY E") = ACY E);

Electronic ground state:

10

VY >V

Schematic diagram showing the energy transfer processes occurring in
thermal molecular collisions. V, R, and T refer to vibrational, rotational, and
translational energy respectively. The numbers are typical values of Pt (atm
s), the bulk “relaxation time” characterizing the particular mode of energy
transfer (Adapted from W. H. Flygare, Accounts chem. Res 1, 121 (1968)).
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Non-radiative transitions

vibrational T2
relaxation

internal

: intersystem
conversion ¢
106.1012 §-1 crossing
104-1012 st
E — \ Absorption

relaxation

S1
Absorption <
[ ]
Fluorescence
10 -10°s™

The lowest triplet state vibréiional - n @
intersystem g

. >1012 st
crossin
is labeled as T, oo | crossing
Phosphorescence

vibrational 10" —10* 5™
relaxation .
> 1012 s1

Electronic ground state, S,
is always singlet

=N
D
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State populations

Apart from M3, , intensity of a transition depends on number of molecules in the state ¥,

lemperature: T, Ty, T.o Tyip, Lo

E

3

Boltzmann distribution. 2

1

N,=cge 0

N
Proportionality constant:
~ N
ENi _N = CE&‘ o EilkyT E— C= Eg' o Ei/koT
Ng e—Ei/ka

N, =

-E; /k, T
See
1



. N.
Thermal equilibrium. i _ ce EifkT

ni =
8i
Hy — o BBy T
nl 1 T T T T T
0.8
N2 Nl
_ —(E,—E,); /k,T
( - )=(n2—n1)=n1(e 2o _1) 0.6F
g2 gl F(v)
04r
E2 > El > I’l2 < nl 0.2
] m ] ]

0

@ v

At thermal equilibrium the lower is a level the high is its population.

Apart from degeneracy, the ground state is always the most populated
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Rate Equation Approach

Interaction between radiation and matter

ABSORPTION

Before After

hv state 2 @ state 2

AVAVAV

® state 1 state 1
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Spontaneous emission

Before

@ state 2

state 1

Stimulated emission

Before

® state 2

AVAVAVS

state 1

After
state 2
hv
/\/\/\/’
@ state 1
After
state 2 2hv
@ state 1
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Einstein Coefficients N=N +N,
Spectral density of energy: p(V): OE = p(v)-6V -ov;
Absorption: pon=2S-_71 .
N cm” cm” - HZ
d_2 =B,, p(v;,)N,
t 0E p(v)-0V-év

Spectral density of photons: 07 =

.. hv hv
Spontaneous €mission:
sz A ) (Y (Y
= 'A21 N2
dt
1
N, =cexp(-A,t), T=—
21
Stimulated emission: D R Y \J
sz The systems are at equilibrium (T) !

dt = _le IO(VIZ)NZ
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System in equilibrium. - =0

B, p(vi,)N, = A, N, -B,, p(v,,)N, =0
B12 p(vl2)Nl = A21 N2 + B21 p(vl2)N2 = (A21 + B21 p(VIZ))NZ

N, _ B, p(v;,)
N, A, +B, p(v,)

Taking into account: e _ 8, kT _ 82, KT
N g g,

hv,

B, p(Vi,) _& e_k?
A, +B, p(vy,) g
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hv,,
A21 g_ze el A
gl _ 21
P(Vu) = _hvp, - hvy,
B12 - le g_ze o B12 &6 ol - B21
g &2
, o 8mhv’ 1
From Planck’ s law of black body radiation: p(v,,) = 3V v
c v,
el —1
8thv), 1 A,
o3 hvyy B hvip
e _1 B, e _B,
25
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Einstein Coefficients

Apart from degeneracy, the probability for a
molecule to absorb and to emit a photon is the same.

Intensity of spontaneous emission (fluorescence)
scales up with photon energy:

Electronic: A=0.3-0.7 um

Vibrational: A= 3-10 um; => 103 times weaker
Rotational: A= 103-10% um; => 106-107 times weaker

Consistently, lifetime of electronic states is 10° and
107 times shorter than of vibrational and rotational
states, respectively.
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hv

AVAVAV

Spectral lineshape

Before

- 1.0+
e

state 2 a
o
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S 054
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©

@ state 1 r 0.0- : .

[ [
Photon energy, hv
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Spectral lineshape

1.0+
C
o
YaVaVaVe® 4 5
Vavavavae 4 S
NNNNS 8

2 05-
A\ N\N\NY ©
5
Y 3

0.0 T T T T T
Photon energy, hv

Life-time spectral broadening:

1

Uncertainty principle: AE Tt =% or (AE=hAv) | Av= Y-

o % AV = : (cml); AV oV’
27CT

1. Natural linewidth: T =

A
Av/2m
(v-v,)’ +Av’ /4

Lorentzian: g(v)=
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Homogeneous broadening (Lorentzian)

2._Pressure broadening:

1
AV o« —— (‘L’ e 1) —> Av=>bP (b ~ 10 MHz per mBar)
T coll P
coll
3. Power broadening 4 Transient time broadening
(m,) =({n,)
n, « cos’(2mft) v
n, o sin’ (271 fr) ] rEdiv
1
Av=—=f

T
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Inhomogeneous Broadening

Doppler Broadening:

|

Wavelength is shorter Stat|onary waves \.."".4‘:1va‘;lr:-n'ulu is longer

when approaching when receding

+V -V
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Inhomogeneous Broadening

-1

Doppler Broadening: v =v, (1 _ Va) =V = (V-v,)e
c v

V2 2
m 2k T

dn(V ) = VdV; Vy=| ——— b

n(V)=pV)dv, p(v) (zﬂka} e

dn(V)= p(V)'Z—Z dv=g(v)dv

172 me*(v-v,)’

2 _
dV_v,-c ¢ . g (v)= 1{ mc® ) T
v vy, v, \ 277 )
V2 <i ; G . .
g(V)=p(V)==2| " T aussian line shape
vV, V,\2mkT
v (2kTIn2) T
\4 n
i = AV=7.1-107 Vor| = (cm’!, m is in a.m.u.)
c\ " m p



Inhomogeneous Broadening

Thermal congestion.

1 1 1 T T
19300 19400 19500 19600 19700

.o -1
Total excitation Wavenumber, cm
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